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FOREWORD 

A summary report is presented on work performed during the period 

May to Decemkr 1969 on the Contract N.AS8-21123, "Space Environmental 

Effects on S~lidification.~~ The reported work essentially fulfi l ls  the tasks 

stated in Modifications 4 and 6 to the original contract. T'hese are: 

Define mechanism h so'cidification and phase chmge that 
may be perturbed by the environment 06 s.?ce, particularly 
zero-gravity 

Initiate a study to define materials having a. high potential 
for production in space 

Define analytical models for study of the rtoati-g zone and 
Czochralski techniques for crystal grmr-:I. 

Define major potential problem areac a:.:! ociated with 
solidification and :rystal growth in s-?ac 

Initiate theoretical and analytical stx1die.j to defins the 
effects of the space environment, pnrtir:rtlarly zero-gravity , 
on the basic mechanisms involved in t.he aalidification of 
mate rials ha-+g high potential 2or i pace proces s k g  in- 
cluding semiconductors. supercondr~.ctor: , Ce rroelectrics 
and other materials. . b o n g  the s~lirlii'i ation techniques 
to be considered a re  unidirectional, SOPI: ion transport, 
floating zone, and Czochrdlski. It i t  highly desirable to 
define analytically the functional depr-dence of impurity 
deposition and structural dzfects on solid:..ficatioa mech- 
ztnisrns in a zero-gravity environment. 

This study program is sponsored by the George C, Marshdl Space Flight 

Center, National Aeronautics and Space Administ r ~t ion, Huntsville, Alabama. 

Mr. T. C. Bannister is the directo- .?f the study. jr, P. G. Grodzka, Research 

Specialist, Lockheed Missiles & Space Company, I.Iw,tsville F s e a r c h  & Engi- 

neering Center, Huntsville, Alabama, is the Princ!'rpal 'Investigator. 
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A theoretical- analysis of the influence of various zero- 

gravity effects on solidification was conducted. Results of 

this analysis made pos sibl.: the designation of five speciiic 

single crystals as candidates io r  manufacture in space orbit. 

The five candidates a r e  silicon, germanium, KTN, BANANAS, 

and CuC1. Also, a number of considerations pertinent to space 

processing concepts and mathematicd analysis theory are 

discussed. 
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Section 1 

INTRODUCTION 

Lockheed's initial studies on the effects of the space environment on 

solidification were directed toward a thorough evaluation of the science and 

technology of thermal contrd  of orbiting spacecraft by use of solid/liquid 

phase-change material (PCM). References 1 and 2 document the work per- 

formed in these studies. 

While this work was in progrees, the concept of utilizing the unique envi- 

ronment of space orbit for poduction purposes began to excite the imagination 

of a large segment of the scientific comnunity. One of the most promising 

product areas foreseen for space pxoduction was that of single crystals and 

directly solidified compoeites for electronic and orbital applications. Know- 

Pedge and information generated on the subject contract was just the sort 

which wa.s required for evaluating and innovatir~g space processing concepts. 

Before fu l l  use can be made of the information, however, its relevancy to 

specific products and processing procedures must be analyzed. The work 

conducted for the nine-month period (May throush December 1969) hae been 

soncerned mainly with such a relevancy analysis. Results of the present 

study includz the identification and characterization of: 

e Space environment effects on crystal growth and other 
Y olidificatfon processes 

o Product8 and materials having a high potential for space 
processing 

Processing concepts based on solidification most suitable 
for zero-g environments 

a Potential problem areas aesociated with solidification 
in zero-g. 
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In addit ion, considerations pertinent to mathematically modeling floating- 

zone and thc Czocfiralski techniques of crystal grawth to include important 

zero-g effccts a r e  discussed. Although the mathematical modeling is  

restricted to the two cited techniques of crystal growth, the underlying con- 

siderations a r e  equally applicable for modeling of general PCM behavior in 

zero-g environments. 

Only materials and processing concepts which involved solidification 

from a liquid phase a r e  considered. Crystal growth from vapor o r  solid 

phases is  beyond the present scope. 
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Section 2 

SPACE ENVIRONMENT EFFECTS ON CRYSTAL 
GROWTH AND ON OTHER SOLIDIFICATION PROCESSKS 

2.1 INTRODUCTION 

In a previous report (Ref, l), space environment effects on solidification 

processes are considered in detail. In t%e cited reference it is concluded 

that zero o r  near zero gravity fields will be the most important parameters 

affecting solidification behavior in space environments. Gravity affects solidi- 

fication processes indirectly through buoyancy or convection, Convection 

determines the temperature and concentra.tian fields in the fluid phase. Solidi- 

fication processes, in turn, depend directly on temperature and concentration 

distributions. As a result sf these considerations, three main advantages a re  

foreseen for processes involving crystallization in near zero-g environments. 

T h  ss  are: 

Elimination of gravity -driven conve cticn 

e Non-segregation of composites because of density differences 

Full use of surface tension forces in shaping, coating, and 
forming ope rat ions. 

New or better products can be postulated which capitalize on each of 

these advantages. For example, the elimination of gravity-driven convection 

promises electronic and optical single crystals of unprecedented perfection. 

Ball bearings of hitherto unheard of tolerances possibly can be made by allowing 

metal melts to solidify while freely levitated under zero-g. A definite- con- 

clusion regarding the feasibility of such  product^, however, requires that a 

number of questions be considered further. Among these are: 
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In what manner does convection influence crystal growth 
and thereby influence crystal perfectidn? 

What extent of convection is likely to be encountered under 
v3rious g conditions ? 

Inwhat manner might non-gravity drivingforces for mass 
movement be utilized for effecting new products? 

These questions a r e  cons-dcred in the followin,% paragraphs although not 

in the order of their presentation. To answer the posed questions adequately, 

it is necessary to f i rs t  consider the nature of melt and s dution crystal growth, 

non-gravity d.iving forces for fluid flow, the scale of fluid motion, and 

couplinp pf~enomena. 

2.2 MELT ANL SOLUTION GROW TH CHARACTERISTICS 

In general, solution growth is not as desirable a s  is melt growth for 

high-quality single crystals. Solution growth i;;c much slower and usually 

produces a relatively imperfect product. In certain circumstances, howeve r, 

solution growth is  the only practical means for growing an acceptable product. 

For this reason, it cannot be totally dismissed. A phase diagram, FAg. 1, 

for a simple eutectic will serve to illustrate the distinguishing character- 

istics of melt and solution gxowth. 

Point A represents the melting point of pure S1 and p ~ i n t  E that of pure 

S2. Melt growth of S1 would occur well over on the left-ha,rd portion of 

curve AC, while melt growth oi S2 well over on the right-hand side of cmve 

EC. Regions of solution growth of S1 and S2 occur over the rest of the AC 

and EC curves. In the region of eutectic crystallization both S1 and S2 

crystallize simultaneously. Obviously, when considering solution growth 

of any companent, rc is well not to get too close to the point of eutectic 

crystallization. 

The dividing lines as  shown in Fig. 1 were drawn rather arbitrarily. 

It remains for  future studies to define precise criteria fox the position of 
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Weight percent Component S2 in Component S 

Fig. 1 - Schematic Phase Dia; am far a Simple Ectectic System 
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the dividing lines. The point t;o be made here i s  that melt and solution 

crystal growth are  not 'fundamentally different processes, but just a matter 

of degree of dominance of various possible rate processes. For example, 

;A melt growth of S1 because the amount of S2 is very small, the rate of 

crystal growth wi l l  be determined either by the rate of heat transfer or the 

rate of the atomic attachment kinetics. In solution growth of S1, because 

of the greater amount of S2 component, the rate of diffusion of SI from 

solution to the crystallizing interface becrrmes important, One analysis of 

the relative importance of heat transfer and diffusion presents a simple 

criterion for determining which rate process is predominant (Ref. 3). This 

criterion is stated as follows: 

The term c,  is the concentration 2.t the growing crystal interface, c, the 

bulk ccncentratis~, s the crystal solubility, R the gas constant, T the tem- 

perature, D the diffusion coefficient and L the heat of solution. If either of 
CC 

the expressions is greater than one, c 2 c r  = S, and diffusion is the con- 

trolling rate. I£ either expression is much less than one, heat conduction 

is the limiting factor' . 

2.3 NUN-GRAVITY DRIVEN CONVECTION 

Liquid-vapor, liquid-liquid, and possibly liquid-solid interfacial 

tensions and also volume changes accompanying solidification a re  potential 

non-gravity forces for  fluid flow. In the present study only the liquid-vapor 

and liquid-liquid interfacial tens ion driven flows a r e  considered. Fluid 

flow caused by surface or interfacial tension gradients is called the 

Marangoni effect. [Several excellent ge-era1 reviews of surface tension 

flows are-given in Ref. 4). If a free liquid surface experiences a tem- 

perature or  concentration gradient, a surface tension gradient will result 

because surface tension is a function of temperature and conccnt ration. 
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*- 
1 . . Along the surface liquid will  flow from the region of low surface tension to  

- -a 
one of high surface tension. Usually, this will be from hat regions to 

. i '  colder regionm because surface tension generally decreases with increase 
c of temperature. W e  liquid moves hster near the surface, the depth of the 

disturbance &epending on a variety of hydrodynamic parameters, 

The occurrence of "tear d r o p H  in a wine glass is a comma illu~tsa- 

tion of the Marangmi eftsct. In this case evaporation of alcohol leaves the 

layer ai  liquid on the wetted glass wall with z higher surface tensim th+o in 

the bvlk of the liquid, As s result, liquid on the glass walls continuously 

draws up more liquid from the bulk until a YterrIb is formed. When the 

"teas" becomes large enough, it hiis back isto t h ~  liquid Anotbr less 

eonlmonly observed fluid motian also bas its origin in surhce tensiolr gra- 

dimst. A cellular motion results if a thin lay2r of fluid is bated from 

below ar;d cooled from abme. This type of con-feetion flow wag first inves - 
tigated by sfnard in 1900. A s  viewed inperspective, ~ 6 n a r d  cell. present 

the appearance of a tray of doughnuts whose peripheriee are equeeeed 

together. Typical cell appearances, as viewed from abbove, arc shown in 

Fig. 2. 

Worm-Shape Cells 

Fig. 2 - Typical cell patterns caus. d ky convection (Ref. 5 )  
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L0i.d Raylcigh devc loped a theory for cellular convection on the basis 

of an unstable dcusity g*:ar;ief~t, Rayhigh' s theory, howcvcr, did not agree 

with all experimental cbse; ration. For example, cellular, convection was  

found in shallaw pools caoletl from belm; a stable situation according to 

Rayleight s theory, AZno 'he flow patterns observed in some instances 

were apposite to those predicted by Rayleights theory. Hot liquid was 

observed rising b-210~ centem of depression, whereas ho2 liquid would be 

expected to coincide with d e ~ t e d  regions if the flow were gravity driven 

(See Fig. 3). The discrepancies were resolved wheu b*h gravity and 

surface tension were recognized as possible motiv2 f o x e s  for fluid flow. 

Couplings between surface tension and buoyancy were also recognized as 

a possibility, 

Hot Hot 

Cold Cad  
: & , b s  

( A )  
Surface Tension- Driven Cell. Gravity-Driven Cell8 

Fig. 3 - Fluid Flow Patterns in ~ i n a r d  and Rayleigh Con- ection Cells 

In one analysis of cellubr convetf;ou (Ref. 6), a stability criterion 

for surface tension-driven tlowe based on a dimensionless number B is 
given. This number, known as the Marangoni number, expresses the ratio 

of surface tension to viscous forces and is defined as 
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where d ~ / d ~ ,  v ,  a, p, and d are vertical temperature gradient, kinematic 

viscosity, thermal diffusivity, density and thickness of the fluid layer, 

respuctavely. The-term d y / d ~  represents the rate of change of surface 

tension with temperature. 

For gravity-driven cellular convection the atability criterion is based on 

the k a y l ~ i g ~  number, ~vhich is given by 

where g is the acceleration due to gravity and B+e coefficient d expansion. 

2-4 MACRO6COPIC AND hdICROGC0PIC CONVECTION CRITERIA 

Whether a flow is classified as ~nacroscopic or micr~scopic depends, 

of course, on the scale of interest. For example, gravity driven ~ e h a r d  

cells are considered in s-uch large scale phenomena as cellular cloud 

patterns, polygonal distribution of rocks in certain arctic regions, anc! 

Pmar craters (Ref. 7, p. 71). On the other hand, ~ e ' b r d  cells in sizes 

down to 50 microns are also commonly observed in thin flvid layers (Ref, 8)- 

Both macroscopic and microscopic convection can influence the size and I 

quality of sing2e crystals, as discussed later. For the moment it is of 

interest to investigate what critzrion might be used to decide which fluid 

flow driving force is predominant in any given situation. First of all it 

is necessary to define some measure of scale of motion. Phis require- 

ment is conveniently fulfilled by a wavelength, A. For example, the length 

of waves generated on a liquid-surface by mechanical vibration, or the 

distance between two regions of repeating properties such as the distance 

between the cell walls of s Behard cell. 

In the case of waves on a liquid surface, their speed is - given by the 

following formula if gravity is the dominant Muence (Ref.- 9) 
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In the case where surface tension is the dominating force 

The folluwing criteria, therefore, may be devised for deciding which force, 

gravity or surface tension, plays the-predominant role (Rd. 10, pp. 597 - 598): 

gravity- donhatecl 
waves 

surface tension- 
dominated waves 

I - -  

-. 
As previously stated, convection may affect crystal growth processes 

: i indirectly by altering the temperature and concent ration field throughout the 

fluid phase. Because both coxkction and solidification mechanisms, how- 

ever, depend directly on local temperature and concentration conditions, 

convectionand solidificatiaaarz seen to be depqndent processes. In fact, 

they may be said to be coupled processes. Each is a response to imposed . 

variations of a variety of possible independent parametars among which 

gravity must be numbered. The degrdc and mnner  of occrarrence of 

either or both processes is thus interrelated.. For ekample, the occur- 

rence of compositional cells which have their brigin in constitutional 

supercooling depends .on the temperatare gradient in the liquid phase 

(Ref. 11). The steeper the gradient, the-less likely the'occurrknce of 

compositional cells. The steeper the external temperature . gradient, 

hwever, the more likely that convection will result. The internal tern- 

petatl-r gradieat near the solid-liquid interface therefore may be reduced. 
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The presence of a moving solid-liquid interface which is liberating heat, 

in turn influences the convective field. 

Systems under the influence of both gravity and ~ur face  tension 

forces may exhibit behavior unique to force couplings. For example, the 

speed of liquid surface waves is influenced by both gravity and surface 

tension. The coupling may be expressed in the following formula (Ref. 9): 

For the case of cellular convection in thin fluid layers heated from 

below,- the coupling is such that convection is predicted where nona would 

be expected if the coup! *hg wcre ignored. A criterion af instability when 

the coupling, under maximum reinforcement, between the two agenciee is 

taken into account is given by Ref. 12. 

where Rc and Bc represent the critical d u e s .  In general. R and B 

reinforce each other in such a manner that cellular c.onvection may occur 

at a Rayleigh number R and a Marangmi number B smaller than thcir 

corresponding critical values, Rc and BC, 

The phenomenon of convective overstability is still another area 

where coupling hetween gravity and surface tension appears to be an 

, important fluid flow-driving mechanism. When a fluid layer is subjected 

to an appropriate temperature gradient convection may set in as a sta 

tiomry, cellular convection or as  an oscillating convection with a 

characteristic fr9quency (Ref. 13). The flow can be pictured as proceeding 

in one direc'ion for a time, coming to a halt, and then reversing (Ref, 14, 

pa 744). Overstable modes result in regular oscillations in temperature 



and are thus of considerable interest to crystal growers. Regular tem- 

perature oscillations have been observed in a number #-if cases in molten 

salts and in molten metals contained in horizontal boats across which 

temperature gradients are  imposed (Refs. 1 5 and 1 6).  Overstable oscil- 

lations have been the object of a large number of r~themat ica l  treatments. 

The outcomes of these treatments, hawever, have been solnewhat in- 

consistent with actual observations, In particular, the presence of ovcr- 

stable convection was observed in cases prohibiteu by theory (Ref. 17). 

A recent treatment, (Ref. 17), however, establishes that the combined 

effects of buoyancy and surface tension gradients may lead to overstable 

oscillations in certain circumstances where oscillations, according to 

previous theory, would not be expected. The analysis prevents criteria 

for stationary and overstable convective modes in terms of R, the Rayleigh 

number, B the ratio of the Rayleigh number and B the Marangoni 

number, and a term representing a frequency characterization of the fluid 

velocity and temperature perturbation. Overstable oscillation is predicted 

for water heated from above between 0 and ~ O C .  Interestingly, observable 

melting and freezing oscillations are  actually reported in one expe rirnental 

study of freezing water in a temperature gradient (Ref. 18). No free liquid 

surfaces were present in the experimental study, thus raiskg the inter- 

es ting possibility of liquid- solid int e rfacidl tens ion invof vement. 

Mention of various less familiar types of convectiori is found in the 

literature. Among these are flows caused by liquid-liquid interfacial 

tension gradients. A cellulaz interfacial convection structure was found 

to accompany the extraction of acetic acid out of ethylene glycol with ethyl 

acetate (Ref. 19). The suggestion is forwarded that interfacial tension- 

driven flows may also be important at solid-liquid interfaces (Ref. 20). 

Thermosolutal convection results in certain situations. this -type of 

convection the solute concentration varies vertically in a gravity field. 

The result is a layering of convection regions. The origin for this type 

of convection lies in the differing rates at which heat and solute diffuse 

(~ef. '  21). 
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2.6 CONVECTIVE EFFECTS ON CRYSTAL GROWTH 

. Thermal Effects 

Convection may affect crystal growth processes indirectly by altering 

the temperature and concentration field throughout the fluid phase. The 

manner in which macroscopic convection can give rise to uislocations 

-through thermal stresses is illustrated by Fig. 4. 

Fig. 4 - Possible Temperature Isotherms in a Crystal ~ u r i n ~  
Freezing (Ref. 22) 



F i g u ~ e  4 shows the temperature isotherms associated with a concave (to 

the liquid) interface s h a p .  Near the 9 did-liquid interface, the tempera- 

ture at the outer surface of the solid is lower than the temperature near 

the center. Thermal contraction, therefore, causes the outer surface to 

exert a compressive atreas an the ccre of the cxystal while the surtace 

itself is in a state of tension (Ref. 22). LC the solid-liquid interface is 

convex t G  the melt the h e r  core will be in tension and the outer in com- 

pression. When the stress a exceeds the yield stress U , plastic flow Y 
will occur which wilr relieve itself into dislocations. Convection can be 

expected to exert a significant effect on the macroscopic 4nterlace shape 

profiles. Figure 5 indicates the result of convection on the macroscopic 

interface shape durLg a horizontal zone melting of an organic com~ound. 

rHeater Wires 

v Ullrotated Tube 

v Rotated at 2.5 rpm 

Fig. 5 - Effect of Convection on Solid-Liquid Interface Shapes 
in Zone-Meltmg (Ref. 23) 
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On a microscopic scale, convection is probably the cause of many puzzling 

c rystnllinr i mpr rfections. For cxanrplc, temperature fluctuations having 

their origin in turbulent or overstable convection can result in fluctuations 

of crystal growth rate. Becaus r the concentration of solute incorporated 

in a solid is a function of the growth rate, the r - s u l t  of growth rate fluctua- 

tion is a 'rhandinglb of solute in the solid (Ref. 24). Local segregation of 

s olut e on a micros copie scale can als o lead to the introduction of dislocation 

1i11e~ at the bounding surfaces of the se~regate  {Ref. 25). 

The appearance of the various interface morphologies as a function 

of the liquid temperature gradient near the solid-liquid interface ia shown 

in Fig. 6. The morphology changes from a planar t o a  cellular configura- 

tion as the tomperatu-e gradient decreases and the degree of constitutional 

,upercooling increase (Ref. 26).  The appearance o,C the ceUs attributed to 

constitutional supercooling is quite similar t o  the appeara Ice of convection 

cells prdluced in thin layers of liquids. 

Fig. 6 - Various Morphologies aa a Function of Constitutional 
Supercooling, Supercooling Increases from (A) to (E) 
(from Ref. 26)  

15 
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This similarity is considered in a recent paper (Ref. 5). k( this paper 

certain impurity patterns found iil thin alkali halide crystals grown from 

the melt are attributed to segregation induced by rrdicroscale cellular 

convect ion. 

Mass Transfer Effects 

By providing a stirring action, convection increases the rate of 

mzss transfer to the growing crystal. On the other hand, convection by 

decreasing the temperature gradient ahead of a crystallizing interface 

increases the chance of constitutional eupercooling and, thus, the likeli- 

hood of an irregular interface. Such an interface will make solvent or 

impurity entrainment generally more likely (Ref. 27). As the result of 

convective temperature or  concentration fluctuations, local precipitatioa 

of <:npurity may result and be occluded by the grcving czystal. Or, a 

temperature fluctuation may cause an etch pit which becomes covered over 

to form a minute inclusion by growing crystal (Ref. 28). 

A mathematical characteriza.tion of crystal growth from a melt con- 

sisting of component A plus component B is given by the distribution co- 

efficient. The distribution coefficient is defked as  the ratio of component 

concentration, Cs, in the solid phase to that in the liquid, CL. If true 

thermodpa:.~ic equilibrium prevailed the ratio would be ko. During crystal 

growth at steady state an "effectiveff distribution coefficient, k, is defin+d 

by (Ref. 29): 

where f is the c-ystal growth velocity, 6 the distance from the growing inter- 

face beyond which solute concer ':ration is uniformly CL. In this analysis 

only forced convection and inertial convection a r e  considered. Inertial 

convection is the fluid flow normal to the freezing interface occasioned by 
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volume change as the result of phase change. Cole hnd Winegard (Ref, 30) 

consider natural convection specifically. In addition to a solute boundary 

layer, tSS, a t b e r ~ a l  boundary layer. BT' is introduced. A thermal 

boundary layer is defined as the distance ahead of the interface beyond 

which the £law pa .ttm becomes completely turbulent, For metals and -- 

zlloys, Cole. and Winegard conclude that thermal convection daring hori- 

zontal solidification is of greater importance than solute convection in 

regard to the degree of solnte macrosegregation. - 

In addition to the thermal and solute boundary layers, an additional 

boundaqr tape is defined in still another paper (Ref. 31 ). In this work a 

momentum bound-iry layrr, 6f , for metals 2s given by 

Gravity driven convection, however, is not considered. 

As,yet, no comprehensive treatment of natural convection iu terms 

of all of the various bcundary layers has been fomd. Part of the antici- 

pated future work wil l  concern itself with such an elucidation, - 
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Section 3 

PRODUCT AND MATXRIAL CANDIDATES FOR SPACE PROCESSING 

One of two criteria must be met by any product candidate for space 

manufacture. These criteria are: . 
The product can be made orily under near zero-g 
conditions. 

The product can be made better or less expensive 
under near zero-g cwditions. 

In the following, five general product areas which meet ane or both 

of these two criteria and which involve solidification as a major processing 

step are considered, The merits of some specific, economically validable 

materials as related to possible space production are  also weighed. 

3.1 LARGE, PERFECT SINGLE CRYSTALS 

The kinds of single crystals routi .ely produced for various electronic 

and optical applications probably number well into the thoueands. The 

Research Materials Information Center of the Oak Rrdge National Labora- 

tory, maintains a clearing house for information on the availability, pre- 

paration, and properties of high-purity resenrch crystal specimens. This 

center recently undertook to assess the demand for research crystals in 

the United States ( ~ e f .  32). Questionnaires were sent to 2641 individuals 

in 922 different organizations.- As a result of this questionnaire, a list was 

made of the recent most desired single crystals. The number of -single 

crystals desired is over 60, In addition to this Pist of most wanted crystals 

the report presents same other interestir-g inforktion, The estimated - 7 .  

> 

money spent on solid state is frqm 100 to 200 million, with 30 to 60 million 
? 

dollars being sp=nt annually on crystal growth. Also, some 2000 people 
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the United States are bvol--ed in somz aspect of crystal growth. A 

compilation of economically valuable s inglc crystals synthesized and 

characterized by the Solid State Sciences Laboratory of the Air Force 

Cambridge Research Laboratories is presented in Ref. 33. Another 

valuable review of needed crystals is given in Ref- 34. 

The present study sought to identify materials whose space pro. - 
ess ing would offer not only technological benefits but als n irwnediate 

economic benefits. To s certain actual economic and production demands 

for specific single crystals, the present study conducted a literature sur- 

vey and also a telephone survey of a number af informed sources. As a 

result, some 30 single crystal candidates for possible space pr&essing 

were identified. A shorter list of five materials whose space production 

would appear to offer the most p r ~ m i s e  of economic o r  technological pay- 

off is as  follows 

Silicon (Si) 

Germanium (Gel 

KTN (mixture of potassium tantalate and niobate, 

Barium Sodium Niobate (BANANAS) 

Of the presented list, space processing of germanium and silicon 

would appear to be the easiest. The other materials have bean notoriously 

hard to produce in acceptable single crystal'form. Their economic d u e ,  

however, is so  great that the benefits of space p r w  ussing need to be con- 

sidered seriously. The case for space production of the materials pre- 

sented is discussed in the following paragraphs: 

a Silicon and Germanium 

Although silicon and germanium single crystals a re  routinely grown 

in two-inch boules, the demand for larger more perfect crystals of these 

LOCKHEED - RUNTSVILLE RESEARCH & ENGINEERING CENTER 



two workhorses of the semiconductor industry grows incessantly. In 

August 1969 p.n actual shortage of silicon wafers was reported (Ref. 35), 

The trouble apparently lies in the slicihg, polishing, end layers operations, 

The ability to grow larger diame:er silicon single cryr tals w d d  result in 

immediate cost savings because more wafers per slice would be realizsd 

from larger diameter single crystals. Larger diameter single crystals 

of silicon are  alsa  in ever increasing demand for large scale integrated 

circuits, The cost savings in this area if larger diameter, perfect single 

crystals of silicon we?= ~vailable would be tremendous (Ref, 36), 

Another attractive feature of growing silicon and germanium in; space 

is that the growt5 of these two semiconductors is relatively straightforward, 

Both are  elements and can be g r m  directly from the melt. Also, complex 

atmospheric controls are  not necessary - a vacuum would work just fine. 

o KTN and BANANAS 

Problems of growing KTN have plagued the semiconductor industry 

for years. The materid, in its single crystal form, is extremely valuable 

for modulation, switching and deflection of laser beams (Ref. 37). Single 

crystals or BANANAS or  barium sodium nicobate have e.;ceptibnal non- 

linear optical pr~pert ies  , are  strongly piezoeleet ric, have low acoustic 

losses at hig3 temperatures (Ref, 38). Because of its potentially exciting : 

usefulness, BANANAS is presently occupying the attention and energies of 

a large number of investigators, With both KTN and B,A.NANAS, convection 

during crystal growth appears to be the source of impurity rrtriations which 

interfere with electronic or optical performance, W. R. W i l c o x  of the 

Univarsity of Southern California, a noted authority on heat transfer during 

crystal growth, recently expressed this opinion in regard to KTN in a 

-telephone conversation. In the case of BANANAS grming rings are attxi- 

buted to temperature fluctuations caused by turbulent -f ree convection 

(Refe, 39, 40 and 41)- 
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The growth of these two materials is somewhat more complicated 

than +hat of silicon or  germanium, apparently requiring oxygen atmosphere 

control. This complication, however, is relatively minor. Thus, the 

economic and technological payoff for large, high quality crystals of two 

mate rials make them candidates for space production. 

a Cuprous Chloride 

Single crystals of CuCl a re  electro-optical rr,aterials. Such materials 

find use as light modulators. The compound CuC1, however, is impossible 

to grow in high quality single crystal form from melt. A solid state tran- 

sition occurs at 407Oc;the compound has a melting temperature of 422O~. 

Thus,. coolihg a perfect crystal from melt temperatcre usually destroys 

any sizable single crystal. Solution growth, which would enable growing 

the low temperature phase directly, therefore, is the recommended pro- 

cedure. Growth of CuCl from a KC1 melt, however, resulted in optically 

inhomogeneous crystals (Ref. 42). An extensive analysis of the facts of 

h ~ l  grown in this manner was not undertaken, but the cellular appearance 

of some of the imperfections suggests that convection played an important 

role in their formation. 

3.2 SSNGLE CRYSTAL FltLhrrS 

The possibility that thin crystal films can be produced directly from 

melt and, more importantly, processed into a form which can be easily 

handled is one of the most exciting potentials of a zero-g environment. 

The conclusion of one analysis of the processing techniques involved in 

making silicon based integrated circuits is  that better techniques of crystal 

preparation a re  needed (Ref. 43). In particular, it would be highly desirable 

to have a means of producing thin films of single crystal silicon directly 

from melt. At present, 50 to 75% of single silicon crystals, usually grawn . 
by the Czochralski tschnique, are  lost in the vzrious sawing, lappbg and 

etching operations. Also, the number of separate tweezer-handling 
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operations of the silicon wafers in manufacture of actual devices w;ll far  

exceed one $-lad*-cd. Single crys a1 thin films s f  silicon a r e  also much in 

demand for solar cells. It is to -,e expected that thin films wi l l  have a 

flexibility that will make them less fragile and thus much more versatile 

for solar cell application - not to mention the lesser  cost because of 

lessened handling. The foreseen advan'.ages of a space environment for 

production of thin films from melt is t la t  of lessened mechanical strain 

on large sheets of single crystal film. Handling problems would thus be 

lessened an? more versatile processing procedures could be evolved. 

3.3 SPHERES AND TUBES (SOLID AND HOLLOW) 

Ball bearings of unprecedented tolerances is one of the proposed 

candidates for  space manufacture (Ref. 44). The only real considerations 

regarding the manufacture of solid bearings is near zero-g environments 

are material handling problems, Lee, how to eject a quantity of molter: 

metal so that .t will remain levitated long enough to assume a near perfect 

spherical shape; how to cool the molten levitated sphere under zero-g; 

haw to collect the solidified spheres; etc. This assurance a s  to the feasi- 

bility of manufacturing solid ball bearings is  possible because near zero-g 

environments via free C a l l  a r e  routinely used on earth .for the same pur- 

pose, e.g., lead shot. Also, very small spherical single crystals OL alloys 

have been made by eolidifying alloy melts in very small ceramic tubes 

(Ref. 45). Qne consideration which may be of importance with some metals 

is that of anisotropic crystal growth rates. Growth rate anisotropy is not 

expected to be a problem a s  long as  a large number of nucleation sites 

exist, thus assuring a fine grained product. Conceivably where crystalli- 

zation proceeds from only one nucleation site, the molten sphere might 

possihly crystallize into a geometrical shape. Such a rather inlikely possi- 

bility is amusingly illustra-ted in the Pollowing photograph. The photograph 

is an altered version of- Sir  John Everette Mellais' painting llBubbles. 

Dr. G. A. Chadwick of Cambridge University, supplied the negative. 
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Fig. 7 - Zero-G PI-enomcna May be Surprising 

Dr. Chadwick actually used the photograph to  illustrate anisotropic solid 

surface tensions. Small bubbles observed in ioaic solids have a decided 

crystallographic appezsance [Ref,.46). These polyhedral uholdsil are 

attributed t o  extreme anisatrophy cf tke solid surface energy even at 

temperatures approaching the melting point, Liquids, however, generally 

do not exhibit surface tension anisotropy. 

In the case of liquid crystals, however, anistropic surface tension 

does result in non-spherical liquid equilibrium bhapea (Ref, 47). Figure 8,  

reprduced from Ref. 47, shows s m e  of the equilibrium shapes postulated. 

Tactoids, Fig, 8b, apparently have been observed in colloidal solutions and 

in some plant virus preparations. 
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(b) 

(I) 

Fig. 8 - Equilibrium Shapes of Liquid Crystalline Drops (Ref. 47) 

The influence of solid surface tension is important only on a micro- 

scopic scale. The forces involved a re  much too small for any sizable maso 

transfer (Ref. 48). The possibility of crystallizing liquid crystals directly 

into unique shapes, however, is an interesting note. 

Unlikely ar the possibility of directly solidified cubes, etc., at present 

appears, possible ramifications of growth rate and solid surface tension 

anisotropy should be considered further. For  one thing, directly solidified 

single crystal geometrical shapes or solid foams with square bubbles may 
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be highly profitable products. Such polyhedrons would indeed represent 

unique products. 

The elucidation of the advantages of a .zerG-g envi ron~ent  in producing 

hollow ball bearings awaits further advancement in the state of the a r t  of 

materials. First  of all some stabilizing agent fo-r molten metal films will 

have tc  be defined. Stable bubbles of mcist pure materials a re  not possible 

without the yresence of an additive. Some additive, analogies to soap in 

water, will  have to be found for metals before the concept of producing 

hollow ball bearings can be regarded as feasible. Once such an additive 

has been found then other secondary problems such as  the volume change 

which occurs on crystallization, the number of nucleation cites, convection, 

etc. In regard to stable bubble formation, it would be interesting to experi- 

ment with chemical compounds like o r  similar to saponon. Saponin does 

form stable bubbles which apparently can be solidified directly (Ref. 49). 

Finally, the foreseen advantages of zero-g to grow hollow tubular 

crystals is that of lessened mechanical s t ra inin  the produced tubes. This 

lessened mechanical strain would allow longer, straighter tube to be grown 

directly from rrielt. Two reports of such tubes have been found in the litera- 

ture. Single, bi-, and tri-crystalline tubes of ice were grown directly 

from I xter over which a vacuum was maintained (Ref. 50). Also, tubes 

of germanium have been grown by Russian investigators (Ref. 51). Uses 

for such tubes is at present unknown. The recent use of thin films for 

wave guides for acoustic signals (Ref. 52),  however, suggests cnat 1 use 

for  hollow, crystalline tubes would soon be found. 

3.4 DIRECTIONALLY SOLIDIFIED CBMPCSITES 

A number of unusual and unique products as the result of undirac - 
tional s olidif icatlon of multi-component melts have been suggested. These 

include metal alloys, magnetroresistive and infrared polarizing xriaterials, 
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svlpercooling materials, and optical materials (Ref. 53). Nickel, cobalt, 

columbium, and tantalum alloys which are  stronger than any commercial 

alloys of the same base metal have already been produced by this method 

(Ref. 54). 

In one study of the morphology generated by undirectional solidifi- 

cation of eutecties, a classification of the structure a s  a function of the 

degree of constitutional supercooling is given (Ref. 55). The table given 

in the reference is reproduced a s  follows: 

Table 1 

SOLIDIE'ICATION STRUCTURE AS A FUNCTION OF 

CONSTITUTIONAL SUPERCOOLING 

The degree of constitutional supercooling ahead of a single-phase 

planar interface is a function of (1 -ko)/ko, R, and GI, where ko is the 

- 

Single - 
phase 
alloy 

Eutectic 
alloy 

equilibrium distribution coefficielrc, R the rate of growth, and GL the 

Degree of Constitutional Unde rcooling 

Planar Two- Three- Dendrites Equiaxed 
dimension dim-ens ion 
Cells Cells 

Lamellar Rods ox Dendritic or  Acicular 
Broken crystallo- Globular 
Lamellar graphic 

C*- 

temperature gradient in the liquid. For eutectic solidification, a eutectic 

distribution coefficient, ke, is defined as  the ratio of the solubility in the 

solid divided by the solubility in the liquid. Ahead af cach solid phase in 

a solidifying eutectic a different k will obtain. The structure of the eutectic 

w i l l  depend primarily on the values of ( I  -ke)/ke, R, .-and GL ahead of each 

solid phase. A s observed previously, a steep, positive tempera.ture 

gradient ahead of a solidifying interface tends to supr ess constitutional 
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supercooling. A steep temperature gradient, however, also tends to 

increase the likelihood of convection which hae the effect of lessening the 

temperature gradient. It can thus be appreciated that convection can have 

a influence on the microstructure of directiornally solidified com- 

posites. The role of convection in a number of directionally solidified 

eutectic experiments has been considered briefly (Refs. 56, 57 and 58). 

Much, however, remains to be done in this area. 

3.5 POSTULAI'ED UNIQUE PRODUCTS 

Other unique products based on solidification processes can be postu- - 

lated. For example, by controlling the freezing rate it should be possible 

to solidify a monotectic so that the solid r'orms a uniform fibrous dispersion. 

A monotectic is a rnulticomponent melt (liquid 1) which "freezest1 to a solid 

and another liquid (liquid 2), i,e., liquici 1 -solid + liquid 2. Liquid 2 

can then be blown out leaving a fine porous matrix (Ref. 59). 

A composite material consisting of inverse bu'bbles of one phase within 

another phase should certainly possess unique properties. An inverse 

bubble is a spherical film of one material within another material. 1.  the 

case of a i r  bubbles in a liquid, an inverse bubble has the following ccbn- 

figuration (Ref. 60). 

Mate rial 
1 

Fig. 9 - Structure of Inverse Bubbles 
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If it were possible to obtain such bubbles with materials which could bc 

solidified with the bubbles intact, a truly unique product wouid be produced, 

The advantage of zero-g envircmment for the production of such a product 

would be dispersion stability during solidification. The two products just 

ntlentioned are, of course, highly speculative a\ present. More investi- 

gation i 6  indicated. 

28 
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Section 4 

PROCESSIN6 CONEPTS 

4.1 MELT GROWTH 0s' WIRGE SINGLE CRYSTAS 

Melt growth is presentIy the most frequently used technique for 

productionof semiconductor single crystals. The Czochralski method is 

the common technique used, The salient features of the Gxochrakski tech- 

niques are shown in Fig, 10. 

Fig. 10 - Czochralski Crystal-Growing Arrangement 
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Material melt is  contained in a heated crucible. A seed crystal is brought 

into contact with the melt surface. After wetting is completed, the seed 

is slowly withdrawn. The diameter of the pulled crystal is controlled by 

controlling the temperature of the melt and the rate of crystal pulling. 

Also, the crystal is rotated as it is  withdrawn to eliminate thermal asym- 

metry. The me?t may also be rctated for greater control of the thermal 

conditiazs . 

One of the great advantages of the Czoehralski method is that con- 

trolled amounts of impurity can be rezdily added to the melt. Proven as 

the tekhnique is =der earth conditions, it does not appear to bave a very 

high potential for  operation in a zero-g env~ronment without drastic modi- 

ficaticna For one thing, some sort of restraint must be put on the melt. 

A completely containerized melt with the crystal pulling occuring through 

a slot is conceivable. Maxiy foreseen problems, however, can be antici- 

pated with such an arrangement, introduction of addit-onal thermal gradientr 

to name ole. Restraint of the melt by magnetic means is another possi- 

bility in some cases, but probably too complicated in actual practice. A 

more likely possibility is the pedestal m e t h ~ d  which is a c ambination of 

the floating-zone and Czoctralski techniques. This technique-will be dis- 

cussed subsequently. 

Thc floating-zone method appears to be- directly adaptable to a near 

zero-g environment. No real o b j e c t i o ~  to operation in space environment 

can be raiseil. 

The salient features of the floating-zone technique a re  =%strated h 

Fig. 1 1. A molten bacd o r  zone is produced in a rod of polycrystalline 

material. The method of heating may be radiant, induction, or  electron- 

beam bombardment, depending upon the physical e.rracteristics of the 

particular material being processed. The molten zone is cawed to pa.ss 

along the rod, by moving the heat source, with melting occur1 i21g at one 
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interface and freezing at the other. By introducing a properly oriented 

seed at the freezing interface and controlling the rate of zone travel, lsingle 

crystal growth can be acccrnplished. The main advantage of the technique 

is that crucible -melt contact is avoided thereby eliminating a pettentid 

source of contamination. Under 1-g condition, however, the size of the 

molten zone i s  limited by the need for surface tension to balance the hydro- 

static pr ssure of the liquid. Also, a limiting factor ia the tendency of 

surface tension to reduce the liqcid surface area. A long thin molten zone 

would show a tendency to separate. 

Fig. 1 1 - Salient Features of a Floating-Zone Crystdl 
Growing Arrangement 

ata 
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Evcn tux thcr improvement d crystal quality and crystal size might 

be rcalizatte i ~ r  somc materials undcr zero-g with the pedestal method. 

A schematic of the C -  . -8trlts is S ~ Q W I  in Fig, 12. (Ref. 61) 

G11Zing speed 

Polycryatalline 

Ceramic shield 

Fig, 12 - Schematic of Pedestal Apparatus (Ref, 61) 

t 

The definition uf the molten tone a d  crystal ahape with no gravity res- 

training force will be an intereating analytical problem. 

Becacse sb atmosphere or decomposition problems, it may be a d d s  - 
able in some instance& toutniee contained crystal growth In many cases 

the wel l -  kown B ridgrni~n technique or Stockbargar method will probably 

be the molrt zuitable. The a~lsentlds of thie method are illustrated in 

Fig 3,  
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Nichrome 
winding an 
translucent 
silica 

. . . . .*. .* .  , .. 

Fig. 13 - The Bridgma~ Technique [Ref, 62) 

Zn this method molten material in a crucible is lowered from a hot furnace 

into a cooler me, Growth begint when the pointed tip cools below the 

melting peint of the crygtd, Operatiom of this technique in acro-g would 

require that the melt wet the crucible. 
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4 - 2  SOLUTION CRYSTAL GROWTH 

Solution growth offers the advantage of crystal growth at a lower 

temperature than would be possible in melt grcnlth. An txhauative theo- 

retical analysis of the role of gravity convection in solution growth was 

recently reported by one of the foremost recognized authorities on crystal 

growth, W. A. Tiller of Stanford (Ref. 63). As the result of this analysis, 

Tiller ~roposss the arrangement e h m  in Fig. 14 for long t e r m  stability 

and programmed crystal g rowth., 

Connection -f 
cell 

Porous 

ields 

Fig. 14 - Schematic of Tiller's Proposed Cell far Solution Grawth (Ref. 63) 

In : sgion II the butk liquid i s  completdly mixed by forced convection, 

B while region I IB completely convection free. Tha porous plug praventa 

convection flow from regionnto region I. The radiation shield is a further 

m precaution against severe temp rature gradient leading to convection, 
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Cornponcnt concentration in the rcgion 11 is maintained by a vapor feed 

proccdure. 

For growth at near zero-g a number of modifications can be proposed, 

The melt will have to he completely contained. Control of ..he sclute con- 

centration can be accomplished either by vapor feed, slow solution, or 

mechanical addition. Which procedure would bi -, .visdble awaits future 

analysis. 

It should be nated that even though forced convection is required in 

region IX even under zero-g with this arrangement, the elimination of all - 
convection in region I would result in a much superior product. 

Other a~rangements based on solution crystal growth can be devised 

for zero-g operation. One of these is the '?temperature gradient zone 

l-dtkg*; (TGZM) technique described by Pfann (Ref. 64). In this technique, 

a thin layer of solid solute is sandwiched between blocks of edid solvent. 

The whole arrangement is then placed in a stationary temperature gradient. 

A molten zone will result because a solution wi l l  have a lower melting 

point than a pure solvent. Because of the action of the -mrious rate pro- 

cesses -- solution, dif£usion, and freezing -- the molter\ zone will migrate 

through the block. Figure 15 illustrates the physical situation 

- Uncrystallized solvent 

- Molten zone of solute and solvent 

- Crystallized solvent 

Fig. 15 - Schematic of Temperature Gradfent Zone Melting 

.. 
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An aralysis of the technique and several variations a re  discussed in some 

detail in Ref. 65. For the production of semiconductor single crystals 

the technique appears quite promising. A number of specific studies 

including those on Ga As ,  a-Sic, and G ~ A S / G ~ P  hete rojunctions, have 

already been conducted (Ref. 65). One of the most important advanta~es 

of the technique is  the dramatic reduction of constitutional supercooling. 

Presumably operation of the technique in zero-g would further enhance the 

reduction. Probably other advantages such as  large molten zones would 

also obtain in near zero-g. 

Finally, .in some cases the technique of allowing a freely suspended 

crystal to graw from solution may offer advantages in zero-g. In one-g, 

it has been found that curves of equal concentration as  observed by an 

interference micros cope a re  deformed (Ref. 66). Increased convection 

at various paces caused crystal gr&h to be accelerated. Apparently, 

zones where increased convection was observed correlated with resultant 

s olut ion inclus ions. 

36 
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Section 5 

MATHEMATICAL IF 3RMULATXONS OF CRYSTAL GROWTH 

A great variety of factors involved in crystal growth have been dis - 
cussed in previous sections. Many otters  have not even been touched on. 

Reference 1 considers some other ablpects of crystal growth at greater 

length. Obviously, any matheinatical analysis must severely limit the 

arza of interest a id  applicability. For the purposes of evaluating as  yet 

unknown space processing concepts, however, it is desirable to have 

general criteria for deciding which physical processes a r e  predominant. 

Such criteria definition is projected work for the near future. Much of 

the groundwork for such criteria definition has been laid in the course 

of the present, reported study. 

Projected future stuciies are seen as delineating the mathematics 

of the whole range of known physical phenomena involved in crystal growth. 

Once this delineation is completed, criteria for application will be defined. 

With the aid of these criteria it should then be possible to simplify the 

mathematics so as to make them a m e n a ~ l e  to either computer OF inalyti- 

cal solution. 

The following simple example pureued for a short time in the present 

study will  illustrate the approach. Probably the crystal  growing technique 

which will  be most used in near zero-g en.-ironments will be the floating- 

zone. With this technique, i t  will be highly desirable to have a means to 

predict how the shape of the freezing interface is influenced by the rate of 
molten zone travel. The physical situation at study state is as shown in 

Fig; 16. 
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H . - Melting Interface 

Heater I I 

Fig. 16 - Mathematical Model of Zone Melting 

T ravel 
Direction 

-. 

I 

4 

The temperature distribution within the cylindrical rod satisfies the 

differential equation (Ref. 67). 

where 

Molten Zone + 

where K is the thermal diffu~ivity. 

I 

X I 

Obviously, depending on the ratio of the velocity of cry8tallipsation 

and the thermal diffusivity, the p term may o r  rnay not be important. 

If it were unimportant, its neglect would probably simplify the solution 

of equation 1 considerably. 

- Freezing Interface 

-+ 
a 

Other considerationr such as ateady-state temperature distributions 

along the solidifying rod and the mathematical description of surface ten- 

sions driven flaw8 were also examined in the present study. It may be of 

I 
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interest to indicate here some of the considerations obtaining in surface 

tcnsion flows. 

As I disc\issod in the Appendix, if a surface is curved the only dis - 
continuity is in the hydrostatic pressure in a direction normal to the 

svrface. This discontinuity for a liquid sphere is given by the well known 

equation 

where P, a.nd P, are  the external ;and intexnal hydrostatic pressures, and 
a a - 

2Y r the radius of the curvature. The term -.'is called a surface pressure, 
X 

r, by some authors. If the surface tension varies along the surface 

because of temperature o r  concentratior, variations, a tangential stress 

variation is set u p  

Between two phases, therefore, a discontinuity in the bulk tangential 

stress is  set up proportioned to  the variation of surface tension gradient 

or surface pressure gradient. More completely, the shear stresses 

exerted by the bulk phgses i s  given by Ref. 4c. . . 

. 
Shear stzesses Surface pressure Surface 
exerted by = gradient t dilational 
bu't fluid stress - 

t Surface 
ahear strese 

Simplification of the preceding equation to easily produce accurate physical 

and mathematical approximation8 of floating- cone cry8 tallisation is the 

subject of projected future studisr. 
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24ECHAruICAL AND THERMODYNAhIIC 
EXPLPNATIONS OF SURFACE TENSIONS 



Appendix 

MECHAMCAL TXEXTMENTS 

Mechanical t rcratment s of r urface tcinr ion presented in the litc rature tend 

to be confusing. R botheroome point frequently encountered is how the liquid 

surface can be in a rtate of teririon when a liquid i r  defined ar material that 

cannot withatand a shear atrerr. The confusion regarding; this point appaarr 
- 

to stern from a failure to clearly define prsrrure tcrmr. For example, the 

following list of prerrurc .errnu are encountered in tho literature on surface 

t en8 ion: 

Hydrortatic p errure 

Thermodynamic prer sure 

Total pressure 

Intrinsic prsraure 

b t e d  prerrure 

Molecular prerrure 

Applied pSs8 8.NSe 

Thermal praruure 

#hetic pS888UXe 

Cpgillrry pressure 
.. 

Surfice prsoure. 

It i r  probably well, therefore, to rsconmider the cosicept of prerrure and 

the manner in whichit may be poaribl.~ to clarify the various preisurdr giving 

.-. . 

. 
... A- L 

- 



rise to  surface tension, The following dircussion, while possibly not rigorously 

precise concerning subtle nuances of pressure r e g a r h i  as a tensor term, 

present a fairly simple visual cmcept of surface tension force8 and their 

operation. The discussion follows the presentation of Brown (Ref. 68) for the 

most part. Several original modifications, however, have been incorporated 

into Brown's treatment, 

- Consider a rather sizable, free floating liquid drop as  in aero-g. Two 

pressures, acting in the same direction, keep the drop iceact. These two 

pressures are a cohesive, internal, or  intrinric pressure, Po, and an applied 

external pressure, PE. Acting in opposition to  there two presrures i r  a 

thermal pressure, PT. The thermal pressure arises from m e  thermal motion 

of the molecules. The thermal prearwc..or the t o ~ r e s r ~ r ~ ~ 8 b  80- 

is the pressure th.? i8 indeeendcnt of direction w w  a l i u .  The coheaive 

pressure Po has its origin iri powerful rhort-ranged attractive forcer. In 

the interior of the liquid there attractive force8 actins on any given volume 

element are all of the rame magnitude regardllsr of direction and r o  cancel 

out. Near the liquid surface, however, the surface moiecules experience an 

unbala.rced attraction - more toward the liquid and lea8 toward the vapor, 

The cohesive pressure, in other worde, i r  not the t ame in directions 

normal and parallel to the aurface, At equilibrium, the following equation8 

may be written: 

Normal to the surface 

Parallel to the auzfacc 

QT = go + OE 

Prarsurer parallel to the ruiface a r e  writtea hers a8 r t rerrer  d y  to 

dizitinguish clearly the different diiectioaa. 



Wight at the dividing surface we may say that P, is essentially zero 

because the attractive force@ of vapor molecular for iiq?., .LI mofeculeo and 

vice versrc arc8 quite small. Thir decreased attraction i.1 a normal direction 

to the surface i , ~  puzeling at first encounter. Brown, hwever ,  gives a neat 

-?lanation (Ref. 68, p. 43 1). The surface may be viewed not a r  rtatic but 

in a state of dynamic equilibrium. Because t!ie surface molecules pOa888S 

higher potential energy than the rest of the liquid, their density it9 18.1 than 

in the rest of the liquid, As a rerult the pressure at the rurface i8 le r r  than 

in the rest of the liquid. In other words, Itthe potential snergy which a 

molecule warld lose by moving from the surface into the interior it4 sq-1 to 

the potential energy of rtrain which the ourface layer would =-in by thir 

transfer." As we descend into the liquid Po increuer .  Becauae PT i r  aqua1 

to aT, we may write 

and since ir, the surface layer8 

> Po 
then 

OE < PEW 

which implies a state of tenrion parallel to the mufface. The eurface tenrion, 

however, is defined a6 the force per unit length required to extend a film 

a certain dSatance and is given by 

Y = (PE ' U E ) ~  
- -. 

where t i r  the thickness of the rurface layer. The actud tenrion in the murf.ce 

layer is given by - uEt. 



CURVED SURFACES 

The following illustrations show three pos~ ib l e  curvatures of 

interfaces. 

Planar Concave Convax 

Fig. 17 - Possible Liquid Surface Curvaturea 

Assuming that the liquid surface i s  in a state of tsnrion, it follows that the 

pressures on either aide of the interface a r e  equal fox a planar interface or 

unequal for curved interfacar. The quertion is how the variour preasuret a r e  

altered by a curved interface. Au diacuraed previourly, right at the boundary 

betwsen liquid and vapor, Po ir e r  sor:ially aaro. For a planar i n t e r f a r ,  

therefore, PT= PE. In a liquid whore rurface is cancave to  the vapor, the 

liquid above a small volume element in the surface exurtr an attractive force 

on the element. The situation may be reprerented as r h w n  in the following 

diagram (Ref. 49, p.8): 

rRange of mollicular attractim 

Fig. 18 - Attraction on Small Volume Element in Cwcave Liquid Surface 

In thir caae Yo $8 not aero riuht at-the rurt..cs, but add6 to the thermal 



In a liquid surface concave to the vapor Po is subtracted from PT, i.e., 

PT - Po = PE 

So that in a concave liquid aurface PE i r  greater than PT, and in a convex liquid 

surface, PT is greater than PE. The prerrurea o~ in the airection of the 
.- - 

surface ar r  correspondingly i~c reaaed  or Cecreared becaure of the equality 

PT = aT. If the a, terms are  unaffected by rurface curvature the rurface 

tenaion given previously by 

is alro unaffected by eurface curvature. Thir r e r d t  i r  in a c ~ o r d  with the 

literature (Ref. 69* p. 138). Prerumably for extremely rmaa drop8 ere 

the curvature ir  extreme the oo termr would beaffected, and so the ouritace 

tenaion would 8180 be affected. 

THERMODYNAMIC FORMULATIONS 

Perhaps becauae of the confusion regarding the manner in which a 
surface tearion might ariaa, a number of author8 would deny the exirtence 

of burface tenrion altogether. Sutface t s n r i ~  in there treatment8 i a  ra- 
g&rdsd a8 a convenient fiction with burface energy a8 the ultimate reality. 

WhUe n d  sharing thia view, the prarant rtudy recogn?.es the additional 

inright value of the thermodynamic appruach and r o  preaents a brief outline 

of ita 8 alient fqaturea. 

A rudace onor#y ir defined a8 the- work required t2 movs a molecule fram 

the interior of a liquid to the r ~ r f a c s .  The energy changu involved in extmdhg 

a liquid fiI< irom a rtate of orro  rurface area to a rtatr of rurfacu area A, 

ignoringvolumaoifecta, i rgivsnby ~ . 



The heat term q is given by M where & is further defined as  a heat supplied 

at constant temporature per unit increaae of area. By performing an analyria 

of a cycle in which the surface I8 increared and decreased at conotant tem- 

perature, and the temperature raiaed and loweired at constant area, the 
late-n? heat of surface extenrion i a  fo&d to be (Ref. 69) 

f 

The increase in energy of the film per unit increase in a r e t  is,  therefore, 

In the preceding equation A Ea can be identified with the total aurface energy i 

and y the f r ~ e  or  avalla3.e surface energy. : 
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